Topic	C Date
	Acceleration field
	-> Fluid motion can be described by
	-> Langrangian
	or -> Eulerian
	In either case
	applying F=ma,
	00
	me can obtain particle acceleration
	-> in langrangian method
	-> fluid accedention is described just as
	-> fluid accedention is described just as in solid body dynamics
	a=a(t) for each particle
	-> in Eulerian method
	-> acceleration is described just as a function of position and time without following the particle
	a function of position and time without
	following the particle.
	-> it Vis analogous to describing the flow in terms
	of velocity field V=V(n, y, z, t) rather than the
	-> it is analogous to describing the flow in terms of velocity field $V=V(n, \gamma, z, t)$ rather than the velocity of particular particles
	-> Consider a flerid particle moving along a pathline
	particle velocity (VA)
	particle velocity (VA) is va function of its location and time
	$V_A = V_A \left[\mathcal{R}_A(t), \mathcal{Y}_A(t), \mathcal{E}_A(t), t \right]$

Topic	C — Date — Date
	acceleration
	$a_A(t) = dV_A$
	dt
	Applying chain rule
	= 2VA + 2VA dra + 2VA dra dza
	at an at at at at
	$U_A = d \lambda_A$
	dt.
	$V_A = dJ_A$
	dt
	$W_A = d^2A$
	dt
	>>>
	9A = 2VA + Up dVA + VA DVA + WA DVA
	at an at
	This is valid for any particle
	a = 2V + 42V + V 2V + W 2V
	ot on of ot
	Scalar components.
	$an = \partial u + u \partial u + v \partial u + w \partial u$ $\partial t \partial n \partial j \partial z \qquad an, aj, az$
	$a_{j} = \frac{\partial V}{\partial t} + u \frac{\partial V}{\partial n} + u \frac{\partial V}{\partial j} + u \frac{\partial V}{\partial z}$ are n_{j}, z components
	az = 2W + 40W + 400W + 600W
	ot on of
Citizen	

То	pic Date
	$\vec{a} = \vec{D} \vec{V}$
	$\frac{D()}{Dt} = \frac{\partial}{\partial t} () + \frac{\partial}{\partial t} () + \frac{\partial}{\partial t} () + \frac{\partial}{\partial t} ()$
	Material for Substantial Derivative
	D() - 2 () + (V \7)
	Dt at () () () () () () () () () () () () ()
	Short form
	$V \cdot \nabla = u \partial () + u \partial () + w \partial ()$
	For example
	$\frac{DT}{Dt} = \frac{\partial T}{\partial t} + \frac{\partial T}{\partial x} + \frac{\partial T}{\partial y} + \frac{\partial T}{\partial z}$
	$= \frac{\partial T}{\partial t} + V. \nabla T$
	lemperature

Topi	c Date
	-> Time derivative, 2 () local derivative
	-> Spatial derivative, a () a () a ()
	Material derivative contains two types of terms
	-> Time derivetive (local)
	-> Spatial derivative
	local derivetire réprésents
	-> unsteadiness ef the flow
	OV _ local acceleration
	at
	a () = 0 ~ Steedeflow
	at
	-> Physically there is no charge in flow parameters at a fixed point in space if the flow is steady
	at a fixed boint in space if the flow is steeds
	-> there may be spatial variations
	-> there may be spatial variations for (velocity temperature, density)
	Unsteady DV +0
	at'
	$\partial T \neq 0$
	at
	2P #0
	at .
Citizen	

Topic	Date
	Uniform flow
	-> When velocity & other hydrodynamic parameters at any instant of time do not charge from point to point in a flow
	at any instant of time do not charge from point to
	point ill a flow
	-> flow as said to be uniform
	-> flow is said to be uniform -> flow can be spatially uniform in a pipe
	Consider flow thry a constant diameter jupe
	$V = V_o(t)$
	V. (t)
	—————————————————————————————————————
	-> Value of acceleration depends on whetter
	Vo is being increased or decreased
	$\frac{\partial V_0}{\partial t} > 0$
	- Steady uniform flow
	Sing aniform of 10m
	- unsteady uniform flow Vavious tyles
	- unsteady uniform flow Various types
	- unsteady non-uniform flow
	- steady non-uniform flow

Topic	April 2020 Date
	for a uniform flow (as shown in figure)
	udu vodo etc vanish
	$\frac{\partial y}{\partial \nu}$, $\frac{\partial y}{\partial \nu} = 0$
	$\vec{a} = \frac{\partial V}{\partial t} + u \frac{\partial V}{\partial x} + u \frac{\partial V}{\partial x} + u \frac{\partial V}{\partial x}$
	3 - 21 2
	at at
Citizen	

Topic			Date
	Convective Effe	ts	
	- portion	of the mater	iel derivative represented. Convective derivative
	by the spatial	derivetive —	convective derivative
	-> flow t	property associat	ted with a fluid - point to point
	barticle	e may vary from	- point to point
		-8	
		7. V)V <	Convective
			acceleration
	Example:		
	Stead-	state oberation	v of water heater
		11.	Hot Tout T. T.
			Tout > Tin
	Water	~	pettine
	heater		
		30	
	Cold		
	Tiw		
		h	
			ter is always at same
	cold tempo		
			heater is always at the
		Otemperature	
Citizon	-> flow is si	ready	

Topic	Date
	-> However, T of water increases
	-> However, T of water increases as it passes thru the heater
	Tout > liw
	N.T.
	$\frac{DI}{D+} \neq 0$
	OT = 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	ðt ()
	But uat to
	9w
	(n - being along the streamline)
	T :
	Tincreases with n
	-> There is non zero temberature avadient alma
	-> There is non-zero temperature gradient along the streamline
	-> a fluid traveling along this non-constant
	temperature patt U(QT \(\alpha\) at a specified
	speed (4) will have a temperature charge with
	time at a rate
	DTat
	$\frac{Dt}{Dt} = \frac{\alpha \delta T}{\delta \lambda}$
	even though the flow is steady (ie ot =0)
	J'at